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• Adjustable Speed Drives (ASD) in 

electrified transportation systems

• Electric motor torque control

• Indirect torque control: current control

• Pulse-Width Modulators

• Motor Drives

• Conclusion and challenges
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Tesla Model S:

Traction Motor: 

𝟑𝝓 Induction 

Machine

Pmax = 310 kW

Lexus RX 450h:

Traction Motor: 

PM Synchronous 

Machine

Pmax = 130 kW

Electrified Transportation Systems
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Traction Motor: 
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Machine
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Machine
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DC Bus

storage

Flight Control

generators

Fans

Flight Control

DC loads

Power-by-wire: More Electric Aircraft (MEA)
replacing hydraulic actuators by electric actuators

NASA N3-X HWB:
Series hybrid Electric Propulsion Aircraft (EPA)

Electrified Transportation Systems
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Vertical Take-Off and Landing (VTOL)

Electrified Transportation Systems: Flying Cars
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Rail: electric locomotiveSea: oil & gas offshore platforms

Automated manufacturing

Other Examples of Electrified Transportation Systems

All Electric Ship (AES)
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load
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Control
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Structure of Adjustable Speed Drives
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electric machine

mechanical 

load
DC voltage 

source

Battery

Rectifier

DC Microgrid

PV

C or LC filter (VSI)

L filter (CSI)

Z-source

Quasi Z-source

* Voltage-Source Inverter 

** Current-Source Inverter

L or LCL filter (VSI)

C filter (CSI) 

Topologies for Adjustable Speed Drives

DC Motor

PM Synchronous Motor (PMSM)

Induction Motor (IM)

Wound-Rotor Synchronous Motor

Switched-Reluctance Motor (SRM) 

Doubly-Fed IM

Multi-Phase Motor (2 × 3𝜙, 5𝜙, 6𝜙, …)

3, 5, 6, …3, 5, 6, …

H-bridge

VSI*

CSI**

DC/DC+VSI

Multi-Level Inverter

Matrix Converter

Series Inverter
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• No unique approach for drives with power range going from Watt to 100+ kW

• Main control techniques for AC drives: 

1) Open-loop control: 

• Control law: very simple, pulse trains generated using a look-up table or a simple equation

• Sensors: generally no sensor required

• Applications: mostly low power - low cost applications

• Drawbacks: accuracy, efficiency

2) Scalar control (V/f or V/Hz):

• Control law: simple relation between stator voltage magnitude and rotor speed (often under 

look-up table form)

• Sensors: mechanical sensor (or speed estimator) required

• Applications: mostly low power - low cost applications

• Drawbacks: accuracy, efficiency

Control of Adjustable Speed Drives
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3) Vector control: 

• Direct Torque Control (DTC): 

• Control law: torque and flux estimators AND switch pattern selection OR current 

regulators + modulator 

• Sensors: phase current sensors and mechanical sensor, DC-link voltage sensor 

optional

• Applications: widely applied to motor control

• Drawbacks: noise, torque ripples, cost

• Indirect Torque Control or Field-Oriented Control (FOC): 

• Control law: Park transformation + current regulators + modulator OR switch pattern 

selection, flux estimator in some variants

• Sensors: phase current sensors and mechanical sensor, DC-link voltage sensor 

optional

• Applications: very widely applied to motor and generator control

• Drawbacks: cost

Control of Adjustable Speed Drives
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control card

Indirect torque control:
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Motor Drives in Electrified Transportation Systems

Missions:

▪ Electromechanical actuators (EMA): 
• few Watts to kW motor drives

• fixed or adjustable speed drives

▪ Pumps and fans: 
• hundreds of Watts to tens of kW

• mainly adjustable speed drives

▪ Electric motors for propulsion/traction:
• few kW to hundreds of kW

• adjustable speed drives

inverter
motor

load



This document and the information therein are protected by copyright. 
13

Mission Profile: Electric Vehicle
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Electric Motor Torque Control

Motor Control for Electrified Transportation Systems
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Adjustable Speed Drives: Torque Control Problem
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Maximum Torque Per Ampere (MTPA) and Flux-Weakening (FW)
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Adjustable Speed Drives: Torque Control Strategy
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FeedForward Flux-Weakening
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𝜆𝑠
×

÷

𝑣𝐷𝐶

Ω

Advantage: Taking 𝑣𝐷𝐶 into account
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Advantage: Taking 𝑣𝐷𝐶 into account

FeedForward Flux-Weakening

Indirect Torque Control:

Adjustable Speed Drives: Torque Control Strategy + FW
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Look-UP Table (LUT) for 

torque control:
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Torque Control Strategy + FW: Current References
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Adjustable Speed Drives: Feedback Flux-Weakening

Torque Control Strategy:

Advantage: Improvement of robustness with respect to model uncertainties

Challenges: Tuning of FBFW, anti wind-up if integral action, fast dynamic

FeedBack Flux-Weakening
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Electric Motor Torque Control for Electrified Transportation Systems

Indirect Torque Control: Torque control through current control

• Advantage: smooth current (so torque) control

• Challenges: accurate model, DC-link voltage utilization, efficiency, 

sensorless control (cost/reliability)

• Requirements: look-up tables (or functions) relating torque to currents in 

MTPA and FW regions, current controllers

C22 P(-) P() C32
Modulator

Current

Controllers

MTPA and 

Flux-Weakening

To

Switches

ia

ib



i
i

v
*

v
*

id

iq

idref

iqref

vd
*

vq
*

va
*

vb
*

vc
*

𝑣𝐷𝐶

𝑇𝑟𝑒𝑓



This document and the information therein are protected by copyright. 
24

Current Control

Motor Control for Electrified Transportation Systems
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𝑣𝑑
∗

𝑣𝑞
∗ = 𝑅𝑠 ∙

𝑖𝑑
𝑖𝑞

+
𝑑

𝑑𝑡

𝜓𝑑
𝜓𝑞

+𝜔 ∙
0 −1
1 0

∙
𝜓𝑑
𝜓𝑞

+
∆𝑣𝑑
∆𝑣𝑞

Park model of PMSM:

with: ൝
𝜓𝑑 = 𝐿𝑑(𝑖𝑑 , 𝑖𝑞 , 𝜃, 𝑇°) ∙ 𝑖𝑑 +Ψ𝑓(𝑖𝑑 , 𝑖𝑞 , 𝜃, 𝑇°)

𝜓𝑞 = 𝐿𝑞(𝑖𝑑 , 𝑖𝑞 , 𝜃, 𝑇°) ∙ 𝑖𝑞

Motor torque (Clarke transformation):

𝑇𝑚 = 3
2 ∙ 𝑃 ∙ 𝜓𝑑 ∙ 𝑖𝑞 −𝜓𝑞 ∙ 𝑖𝑑 = 3

2 ∙ 𝑃 ∙ Ψ𝑓 + (𝐿𝑑 − 𝐿𝑞) ∙ 𝑖𝑑 ∙ 𝑖𝑞



d

q
𝜔

synchronous 

frame

𝛼
and inverter nonlinearities: ቊ

∆𝑣𝑑= ∆𝑉 ∙ 𝑓𝑑 (𝜃)
∆𝑣𝑞= ∆𝑉 ∙ 𝑓𝑞 (𝜃)

Current Control: PMSM Model
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Current Control: PMSM Model

Modeling: mapping flux linkages
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∆𝑣𝑑= ∆𝑉 ∙ 𝑓𝑑 (𝜃)
∆𝑣𝑞= ∆𝑉 ∙ 𝑓𝑞 (𝜃)

Self-commissioning:

• Estimation of 𝑅𝑠
• Estimation of ∆𝑉
• Estimation of Ψ𝑓

Modeling: voltage drops in the inverter

𝜓𝑑 [𝑊𝑏]

𝜓𝑞 [𝑊𝑏]
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PMSM Current Control
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Controllers

• PI Control

• Complex Vector Control 

• Internal Model Control

• Sliding Mode Control

• Model Predictive Control

• Model Free Control

• …

Model-based control: available knowledge on the model 

under look-up table (LUT) form
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+
−

𝑣𝑞
∗ 𝑖𝑞

𝑖𝑞

𝑖𝑞𝑟𝑒𝑓 𝑣𝑞
𝑃𝑀𝑆𝑀

𝐶𝑢𝑟𝑟𝑒𝑛𝑡
𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑠

+−
𝑣𝑑
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𝑖𝑑

𝑖𝑑𝑟𝑒𝑓 𝑣𝑑

PMSM Current Control: Design and Analysis

Current control objectives:

▪ Zero steady-state error:  𝑙𝑖𝑚
𝑡՜∞

𝑖𝑑𝑞 (𝑡) = 𝑖𝑑𝑞 𝑟𝑒𝑓

▪ No overshoot (or overshoot < 5% ~ 10%)

▪ Requested response time 𝑡𝑟 (in ms) or current (torque) control bandwidth (in Hz or rad/s)

▪ Fast set-point tracking with small tracking error
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Current controller transfer function:

𝑣𝑑
∗

𝑣𝑞
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Controller transfer function without decoupling:

𝐶 𝑠 =

𝐾𝑝𝑑
1 + 𝜏𝑖𝑑 ∙ 𝑠

𝜏𝑖𝑑 ∙ 𝑠
0

0 𝐾𝑝𝑞
1 + 𝜏𝑖𝑞 ∙ 𝑠

𝜏𝑖𝑞 ∙ 𝑠

𝐾𝑝𝑑 = ℓ𝑑 ∙ 𝜔𝐵𝑊𝑑

𝐾𝑖𝑑 = 𝑅𝑠 ∙ 𝜔𝐵𝑊𝑑

desired bandwidth of 

𝑑 −current control loop
𝐾𝑝𝑞 = ℓ𝑞 ∙ 𝜔𝐵𝑊𝑞

𝐾𝑖𝑞 = 𝑅𝑠 ∙ 𝜔𝐵𝑊𝑞
desired bandwidth of 

𝑞 − current control loop

PI Current Control: Design

𝜏𝑖𝑑 = Τ𝐾𝑝𝑑 𝐾𝑖𝑑 𝜏𝑖𝑞 = Τ𝐾𝑝𝑞 𝐾𝑖𝑞
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ǁ𝑖𝑑
ǁ𝑖𝑞
= 𝐼 + 𝑌(𝑠) ∙ 𝐶(𝑠) −1 ∙ 𝑌(𝑠) ∙ 𝐶(𝑠) ∙

ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

=
𝑇𝑑𝑑(𝑠) 𝑇𝑑𝑞(𝑠)

𝑇𝑞𝑑(𝑠) 𝑇𝑞𝑞(𝑠)
∙
ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

Closed-loop transfer function: without decoupling

identity matrix

⇒ ൝
ǁ𝑖𝑑 = 𝑇𝑑𝑑 𝑠 ∙ ǁ𝑖𝑑𝑟𝑒𝑓 + 𝑇𝑑𝑞 𝑠 ∙ ǁ𝑖𝑞𝑟𝑒𝑓
ǁ𝑖𝑞 = 𝑇𝑞𝑑 𝑠 ∙ ǁ𝑖𝑑𝑟𝑒𝑓 + 𝑇𝑞𝑞 𝑠 ∙ ǁ𝑖𝑞𝑟𝑒𝑓

parameters uncertaintyknown model

𝑇𝑑𝑑 𝑠

𝑇𝑞𝑞 𝑠

𝑇𝑑𝑞 𝑠 ≠ 0

𝑇𝑞𝑑 𝑠 ≠ 0

𝑇𝑑𝑑 𝑠

𝑇𝑞𝑞 𝑠

𝑇𝑑𝑞 𝑠 ≠ 0

𝑇𝑞𝑑 𝑠 ≠ 0

𝑟𝑎𝑑/𝑠 𝑟𝑎𝑑/𝑠

PI Current Control: Analysis
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With feedforward decoupling, it yields:

𝐶 𝑠 =

1
−𝐿𝑞𝜔

𝑅𝑠 + 𝐿𝑞 ∙ 𝑠

𝐿𝑑𝜔

𝑅𝑠 + 𝐿𝑑 ∙ 𝑠
1

∙

𝐾𝑝𝑑
1 + 𝜏𝑖𝑑 ∙ 𝑠

𝜏𝑖𝑑 ∙ 𝑠
0

0 𝐾𝑝𝑞
1 + 𝜏𝑖𝑞 ∙ 𝑠

𝜏𝑖𝑞 ∙ 𝑠

+
−

𝑣𝑞
∗

ǁ𝑖𝑞

ǁ𝑖𝑞𝑟𝑒𝑓

+−
𝑣𝑑
∗

ǁ𝑖𝑑

ǁ𝑖𝑑𝑟𝑒𝑓

𝐶 𝑠
+

𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

PI Current Control + Feedforward Decoupling: Design

Current controller transfer function:

𝑣𝑑
∗

𝑣𝑞
∗ = 𝐶(𝑠) ∙

ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

−
ǁ𝑖𝑑
ǁ𝑖𝑞

𝐾𝑝𝑑 = ℓ𝑑 ∙ 𝜔𝐵𝑊𝑑

𝜏𝑖𝑑 = Τℓ𝑑 𝑅𝑠

𝐾𝑝𝑞 = ℓ𝑞 ∙ 𝜔𝐵𝑊𝑞

𝜏𝑖𝑞 = Τℓ𝑞 𝑅𝑠
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𝑣𝑑
∗

𝑣𝑞
∗ = 𝐶 𝑠 ∙

ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

−
ǁ𝑖𝑑
ǁ𝑖𝑞

+ 𝐷 ∙
ǁ𝑖𝑑
ǁ𝑖𝑞

+
−

𝑣𝑞
∗

ǁ𝑖𝑞

ǁ𝑖𝑞𝑟𝑒𝑓

𝐶 𝑠
+

𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

+−
𝑣𝑑
∗

ǁ𝑖𝑑

ǁ𝑖𝑑𝑟𝑒𝑓

with:

𝐶 𝑠 =

𝐾𝑝𝑑
1 + 𝜏𝑖𝑑 ∙ 𝑠

𝜏𝑖𝑑 ∙ 𝑠
0

0 𝐾𝑝𝑞
1 + 𝜏𝑖𝑞 ∙ 𝑠

𝜏𝑖𝑞 ∙ 𝑠

,

With feedback decoupling, it gives:

𝐷 =
0 −𝐿𝑞𝜔

𝐿𝑑𝜔 0

PI Current Control + Feedback Decoupling: Design

𝐾𝑝𝑑 = ℓ𝑑 ∙ 𝜔𝐵𝑊𝑑

𝜏𝑖𝑑 = Τℓ𝑑 𝑅𝑠

𝐾𝑝𝑞 = ℓ𝑞 ∙ 𝜔𝐵𝑊𝑞

𝜏𝑖𝑞 = Τℓ𝑞 𝑅𝑠
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PI + feedforward decoupling:PI + feedback decoupling:

ǁ𝑖𝑑
ǁ𝑖𝑞
=

𝑇𝑑𝑑(𝑠) 0
0 𝑇𝑞𝑞(𝑠)

∙
ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

Closed-loop transfer function: known parameters

𝑇𝑑𝑑 𝑠 =
1

𝑠
𝜔𝐵𝑊𝑑

+ 1

𝑇𝑞𝑞 𝑠 =
1

𝑠
𝜔𝐵𝑊𝑞

+ 1

𝑇𝑑𝑞 𝑠 = 0

𝑇𝑞𝑑 𝑠 = 0

𝑇𝑑𝑑 𝑠 =
1

𝑠
𝜔𝐵𝑊𝑑

+ 1

𝑇𝑞𝑞 𝑠 =
1

𝑠
𝜔𝐵𝑊𝑞

+ 1

𝑇𝑑𝑞 𝑠 = 0

𝑇𝑞𝑑 𝑠 = 0

𝑟𝑎𝑑/𝑠 𝑟𝑎𝑑/𝑠

PI Current Control + Decoupling: Analysis
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PI + feedforward decoupling:PI + feedback decoupling:

ǁ𝑖𝑑
ǁ𝑖𝑞
=

𝑇𝑑𝑑(𝑠) 𝑇𝑑𝑞(𝑠)

𝑇𝑞𝑑(𝑠) 𝑇𝑞𝑞(𝑠)
∙
ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

Closed-loop transfer function: parameters uncertainty

𝑇𝑑𝑑 𝑠

𝑇𝑞𝑞 𝑠

𝑇𝑑𝑞 𝑠

𝑇𝑞𝑑 𝑠

𝑇𝑑𝑑 𝑠

𝑇𝑞𝑞 𝑠

𝑇𝑑𝑞 𝑠

𝑇𝑞𝑑 𝑠

𝑟𝑎𝑑/𝑠 𝑟𝑎𝑑/𝑠

PI Current Control + Decoupling: Analysis
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Current controller transfer function:

𝑣𝑑
∗

𝑣𝑞
∗ = 𝐶(𝑠) ∙

ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

−
ǁ𝑖𝑑
ǁ𝑖𝑞

Transfer function of 

complex vector current controller:

𝐶 𝑠 =

𝐾𝑝𝑑
1 + 𝜏𝑖𝑑 ∙ 𝑠

𝜏𝑖𝑑 ∙ 𝑠

−𝐾𝑝𝑞 ∙ 𝜔

𝑠
𝐾𝑝𝑑 ∙ 𝜔

𝑠
𝐾𝑝𝑞

1 + 𝜏𝑖𝑞 ∙ 𝑠

𝜏𝑖𝑞 ∙ 𝑠

+
−

𝑣𝑞
∗𝑖𝑞𝑟𝑒𝑓

𝐾𝑝𝑞

𝐾𝑖𝑞 න

𝑖𝑞

+

++

+−
𝑣𝑑
∗𝑖𝑑𝑟𝑒𝑓

𝐾𝑝𝑑

𝐾𝑖𝑑 න

𝑖𝑑

+

++

−

+

𝜔
×

×

Complex Vector Current Control: Design

𝐾𝑝𝑑 = ℓ𝑑 ∙ 𝜔𝐵𝑊𝑑

𝐾𝑖𝑑 = 𝑅𝑠 ∙ 𝜔𝐵𝑊𝑑

𝐾𝑝𝑞 = ℓ𝑞 ∙ 𝜔𝐵𝑊𝑞

𝐾𝑖𝑞 = 𝑅𝑠 ∙ 𝜔𝐵𝑊𝑞
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parameters uncertaintyknown parameters

ǁ𝑖𝑑
ǁ𝑖𝑞
=

𝑇𝑑𝑑(𝑠) 𝑇𝑑𝑞(𝑠)

𝑇𝑞𝑑(𝑠) 𝑇𝑞𝑞(𝑠)
∙
ǁ𝑖𝑑𝑟𝑒𝑓
ǁ𝑖𝑞𝑟𝑒𝑓

Improved PI controller: inherent decoupling

𝑇𝑑𝑑 𝑠

𝑇𝑞𝑞 𝑠

𝑇𝑑𝑞 𝑠

𝑇𝑞𝑑 𝑠

𝑟𝑎𝑑/𝑠 𝑟𝑎𝑑/𝑠

𝑇𝑑𝑑 𝑠 =
1

𝑠
𝜔𝐵𝑊𝑑

+ 1

𝑇𝑞𝑞 𝑠 =
1

𝑠
𝜔𝐵𝑊𝑞

+ 1

𝑇𝑑𝑞 𝑠 = 0

𝑇𝑞𝑑 𝑠 = 0

Complex Vector Current Control: Design
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Model-Predictive Current Control: Design

Note- 𝑥𝑘: variable at instant 𝑘

Continuous Control Set MPC (CCS-MPC):

𝑖𝑑𝑖
𝑘+1 = 𝑖𝑑

𝑘 +
𝑇𝑠

ℓ𝑑
𝑘 𝑣𝑑𝑖

∗𝑘 − 𝑅𝑠𝑖𝑑
𝑘 +𝜔𝑘𝐿𝑞

𝑘 𝑖𝑞
𝑘 − ∆𝑉𝑓𝑑 𝜃𝑘

𝑖𝑞𝑖
𝑘+1 = 𝑖𝑞

𝑘 +
𝑇𝑠

ℓ𝑞
𝑘 𝑣𝑞𝑖

∗𝑘 − 𝑅𝑠𝑖𝑞
𝑘 − 𝜔𝑘 𝐿𝑑

𝑘 𝑖𝑑
𝑘 +Ψ𝑓 − ∆𝑉𝑓𝑞 𝜃𝑘

Predictive model using Euler discretization:

𝑖𝑡ℎ predicted currents:
prediction horizon of 2

set of n predicted currents

with: 𝑣𝑑𝑖
∗

𝑣𝑞𝑖
∗ = 𝑃 −𝜃 ∙ 𝐶32

−1 ∙

𝑆𝑎𝑖
𝑆𝑏𝑖
𝑆𝑐𝑖

∙ 𝑣𝐷𝐶

𝑖𝑡ℎ switching state
Park and Clarke 
transformation 

matrices

ℓ𝑑

ℓ𝑞

𝑖𝑑

dynamic

inductance

LUT

𝑖𝑞

𝜃

𝑇°

𝐿𝑑

𝐿𝑞

𝑖𝑑

static

inductance

LUT

𝑖𝑞

𝜃

𝑇°

Predictive

Model

𝑖𝑑𝑞
𝑘

𝜔𝑘

𝑣𝐷𝐶
𝑘

Ƹ𝑖𝑑𝑞𝑖
𝑘+2

𝑖𝑑𝑞𝑟𝑒𝑓
𝑘+2

Cost

Function

Minimization

𝑆𝑜𝑝𝑡
𝑘+1

𝜃𝑘

𝑣𝑑𝑞𝑜𝑝𝑡
∗𝑘+1

T
ran

sfo
rm

atio
n

+
P

W
M

𝑆𝑘+1

Predictive

Model

𝑖𝑑𝑞
𝑘

𝜔𝑘

𝑣𝐷𝐶
𝑘

Ƹ𝑖𝑑𝑞𝑖
𝑘+2

𝑖𝑑𝑞𝑟𝑒𝑓
𝑘+2

Cost

Function

Minimization

+

PI

𝜃𝑘

Finite Control Set MPC (FCS-MPC):
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Model-Predictive Current Control: Design

Choices for predictive model: Predictive model using Euler discretization:

𝑖𝑡ℎ predicted flux linkages:

with: 𝜓𝑑

𝜓𝑞

𝑖𝑑

flux

linkage

LUT

𝑖𝑞

𝜃

𝑇°

𝑖𝑑

𝑖𝑞

𝜓𝑑

inverse

flux

linkage

LUT

𝜓𝑞

𝜃

𝑇°

𝜓𝑑𝑖
𝑘+1 = 𝜓𝑑

𝑘 + 𝑇𝑠 𝑣𝑑𝑖
∗𝑘 − 𝑅𝑠𝑖𝑑

𝑘 +𝜔𝑘𝜓𝑞
𝑘 − ∆𝑉𝑓𝑑 𝜃𝑘

𝜓𝑞𝑖
𝑘+1 = 𝜓𝑞

𝑘 + 𝑇𝑠 𝑣𝑞𝑖
∗𝑘 − 𝑅𝑠𝑖𝑞

𝑘 −𝜔𝑘𝜓𝑑
𝑘 − ∆𝑉𝑓𝑞 𝜃𝑘

Choices for cost function:

𝑔𝑖 = 𝑖𝑑𝑟𝑒𝑓 − Ƹ𝑖𝑑
𝑘+2 2

+ 𝜆𝑞 𝑖𝑞𝑟𝑒𝑓 − Ƹ𝑖𝑞
𝑘+2 2

𝑔𝑖𝑆 = 𝑖𝑑𝑟𝑒𝑓 − Ƹ𝑖𝑑
𝑘+2 2

+ 𝜆𝑞 𝑖𝑞𝑟𝑒𝑓 − Ƹ𝑖𝑞
𝑘+2 2

+ 𝜆𝑆𝑛𝑆

with: 𝑛𝑆 = σ𝑖=1
𝑛 𝑆𝑖

𝑘+1 − 𝑆𝑖
𝑘
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Electric Motor Torque Control for Electrified Transportation Systems

Current Control: Control of 𝑑𝑞 −currents for indirect torque control

• Techniques: many linear and nonlinear current controllers

• Challenges: accurate model, online parameter estimation, robustness, 

current sensorless control

• Requirements: phase current sensors and rotor angle sensor, DC-link 

voltage sensor (optional), current controllers, modulator (recommended)

C22 P(-) P() C32
Modulator

Current

Controllers

MTPA and 

Flux-Weakening

To

Switches

ia

ib



i
i

v
*

v
*

id

iq

idref

iqref

vd
*

vq
*

va
*

vb
*

vc
*

𝑣𝐷𝐶

𝑇𝑟𝑒𝑓
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Pulse-Width Modulator

Motor Control for Electrified Transportation Systems
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Phase voltages:

Voltage waveforms:

+
𝑣𝐷𝐶
2

−
𝑣𝐷𝐶
2

𝑣1𝑚

𝑡

+ Τ2𝑣𝐷𝐶 3
𝑣𝑎

𝑡

+ Τ𝑣𝐷𝐶 3

− Τ2𝑣𝐷𝐶 3

− Τ𝑣𝐷𝐶 3

𝑣𝑁𝑚

𝑡

+ Τ𝑣𝐷𝐶 6

− Τ𝑣𝐷𝐶 6

𝑣𝑎 = 𝑣1𝑚 − 𝑣𝑁𝑚
𝑣𝑏 = 𝑣2𝑚 − 𝑣𝑁𝑚
𝑣𝑐 = 𝑣3𝑚 − 𝑣𝑁𝑚

Modulator: Pulse-Width Modulation (PWM)

𝑖𝑎 𝑖𝑏 𝑖𝑐

+

−

𝑣𝐷𝐶
2

𝑣𝐷𝐶
2

−
+

𝑚

𝑀

𝑃

1 2 3

+

𝑣𝑎

−

+

𝑣𝑏

−

+

𝑣𝑐

−

𝑁
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Linear modulation:

Fundamental of 𝑣𝑎𝑏𝑐 = 𝐺𝑉𝑆𝐼 ∙ 𝑣𝑎𝑏𝑐
∗

⇒ VSI being modeled as a gain

Condition for linear modulation:

𝑣𝑎
∗ ≤ 𝑉𝑝 =

𝑣𝐷𝐶
2

+𝑉𝑝

𝑣𝑐

𝑡

−𝑉𝑝

𝑇𝑠𝑤1
2
𝑇𝑠𝑤

𝑣𝑎
∗

Therefore:

𝑣𝑎𝑏𝑐
∗ = 𝑣𝑎

∗2 + 𝑣𝑏
∗2 + 𝑣𝑐

∗2 = 3
2 𝑉𝑚

∗ < 3
2

𝑣𝐷𝐶
2

≅ 0.612 𝑣𝐷𝐶

Sinusoidal PWM (SPWM): DC-Link Voltage Utilization

+ Τ2𝑣𝐷𝐶 3

𝑣𝑎

𝑡

+ Τ𝑣𝐷𝐶 3

− Τ2𝑣𝐷𝐶 3

− Τ𝑣𝐷𝐶 3
𝑇𝑠𝑤
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Space-Vector Modulation (SVM) vs SPWM

Comparison in 𝑎𝑏𝑐 frame:

𝑣𝑎𝑏𝑐 𝑆𝑉𝑀 ≤
𝑣𝐷𝐶

2

𝑣𝑎𝑏𝑐 𝑆𝑃𝑊𝑀 ≤ 3
2

𝑣𝐷𝐶
2

𝛼

𝛽

2
3𝑣𝐷𝐶

1

3
𝑣𝐷𝐶

𝛼𝛽 −Clarke

𝑣𝐷𝐶

3

𝑣𝐷𝐶
2

SVM vs SPWM: DC-Link Voltage Utilization

Maximum voltage vector magnitude:

+15%

+15%

𝑣𝛼𝛽
𝑆𝑉𝑀

≤
𝑣𝐷𝐶

3

𝑣𝛼𝛽
𝑆𝑃𝑊𝑀

≤
𝑣𝐷𝐶
2

Comparison in 𝛼𝛽 frame:

(Clarke transformation)
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Maximum DC-link voltage utilization:

𝛼

𝛽

2
3𝑣𝐷𝐶

2
𝜋𝑣𝐷𝐶

𝛼𝛽 −Clarke

𝑣𝐷𝐶

3

𝑣𝐷𝐶
2

+
𝑣𝐷𝐶
2

−
𝑣𝐷𝐶
2

𝑣1𝑚

𝑡

+ Τ2𝑣𝐷𝐶 3
𝑣𝑎

𝑡

+ Τ𝑣𝐷𝐶 3

− Τ2𝑣𝐷𝐶 3

− Τ𝑣𝐷𝐶 3

Six-step operation (SSO):

Amplitude of fundamental voltage:

𝑉1𝑓𝑚 = 4
𝜋
∙ 𝑣𝐷𝐶

2
= 2

𝜋
∙ 𝑣𝐷𝐶

𝑉𝑎𝑓𝑚 = 𝑉1𝑓𝑚 = 2
𝜋 ∙ 𝑣𝐷𝐶

Six-Step Operation (SSO): DC-Link Voltage Utilization
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Nonlinear modulation region:

𝛼𝛽 −Clarke:

1

3
∙ 𝑣𝐷𝐶 < 𝑣𝛼𝛽 < 2

𝜋 ∙ 𝑣𝐷𝐶

Modulation Index:

𝑀𝐼 ≜
𝑣𝛼𝛽

2
𝜋 ∙ 𝑣𝐷𝐶

𝑀𝐼0 0.9068 1

linear nonlinear

= 𝜋

2 3
six-step operation

Amplitude Modulation Index (MI)

𝛼

𝛽

2
3𝑣𝐷𝐶

2
𝜋𝑣𝐷𝐶

𝛼𝛽 −Clarke

𝑣𝐷𝐶

3

Maximum DC-link voltage utilization:

+9%
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▪ 𝑀𝐼∗: Modulation Index Reference

▪ 𝑀𝐼: Actual Modulation Index

MI range:

▪ Linear modulation: 𝑀𝐼 ∈ 0 0.9068

▪ Overmodulation: 𝑀𝐼 ∈ 0.9068 1

▪ Six-step operation: 𝑀𝐼 = 1

Magnitude Angle

Input 𝑣𝑠
∗ 𝜃𝑣

∗

Output 𝑣𝑠 𝜃𝑣

Nonlinear Modulation: Overmodulation (OVM)

𝑀𝐼∗ ≜
𝑣𝛼𝛽
∗

2
𝜋 ∙ 𝑣𝐷𝐶

𝑀𝐼 ≜
𝑣𝛼𝛽

2
𝜋 ∙ 𝑣𝐷𝐶
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Modulation hexagon Fundamental phase voltage

Nonlinear Modulation: Overmodulation (OVM)

Linear modulation:

𝑀𝐼 = 𝑀𝐼∗

Recall:
0 ≤ 𝑀𝐼 ≤ 0.9068
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Linear modulation ≫ Overmodulation ≫ Six-step operation

From Linear Modulation to Overmodulation and Six-Step Operation

Linear modulation Overmodulation Six-step operation

Overmodulation:

𝑀𝐼 ≠ 𝑀𝐼∗

Recall:
0.9068 < 𝑀𝐼 < 1
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Overmodulation: 𝑀𝐼∗ = 0.94, 𝑀𝑓 = 𝑓𝑠𝑤/𝑓1 = 50

Overmodulation (OVM): Waveforms
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1. Minimum Phase Error (MPE)

- 𝜃𝑣
∗ = 𝜃𝑣: Phase error is ZERO

2. Minimum Distance Error (MDE)

- min 𝒗𝑠
∗ − 𝒗𝑠 : Vector error is minimized

3. Keeping Switching State (SS)
- Hold on 𝑣𝛼

∗ or 𝑣𝛽
∗

4. Minimum Magnitude Error (MME)

- 𝑣𝑠
∗ = 𝑣𝑠: Magnitude error is ZERO

Input Output

Magnitude 𝑣𝑠
∗ 𝑣𝑠

Angle 𝜃𝑣
∗ 𝜃𝑣

Overmodulation (OVM) Techniques

𝒗𝑠
∗

𝒗𝑠
∗

𝑣𝛼𝑣𝛼

𝑣𝛽 𝑣𝛽

𝒗𝑠

𝒗𝑠

𝒗𝑠

𝒗𝑠
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Comparison:

Overmodulation (OVM) Techniques

Minimum Phase Error (MPE)

Minimum Distance Error (MDE)

Keeping Switching State (SS)

Minimum Magnitude Error (MME)
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Maximization of DC-link Voltage Utilization

MTPA

FW

MTPA

FW

𝑀𝐼0 0.9068 1

Linear PWM OVM

+9%

𝑀𝐼0 0.9068 1

Linear PWM

𝛼

𝛽

2
3
𝑣𝐷𝐶

2
𝜋
𝑣𝐷𝐶

𝑣𝐷𝐶

3
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▪ Harmonics of control (reference) voltages

▪ Nonlinear modulation index

▪ Effect on THDv (and so THDi)

▪ Performance degradation at low frequency modulation index

𝑀𝑓 =
𝑓𝑠𝑤
𝑓1

▪ Transition from OVM to SSO

Overmodulation: Challenges
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Example: effect of 5th-harmonic:

Observation:

1. 𝑉ℎ
∗ : THDv ↑

2. 𝜙ℎ
∗ : MI ? (=, ↑, ↓)

𝑣𝑎
∗ = 𝑉𝑠

∗ cos 𝜃𝑣
∗ + 𝑉ℎ5

∗ cos 5𝜃𝑣
∗ + 𝜙ℎ5

∗

Linear modulation:

Overmodulation:

Overmodulation Challenges: Harmonics of Control Voltages



This document and the information therein are protected by copyright. 
55

Nonlinearity due to OVM: < 𝑣𝑎𝑏𝑐 >≠ 𝐺𝑉𝑆𝐼 ∙ 𝑣𝑎𝑏𝑐
∗

Overmodulation Challenges: Nonlinear Modulation Index

Modulation Index Linearization (MIL):

MI linearization: 𝑀𝐼∗ ՜ 𝑀𝐼∗∗ ՜ 𝑂𝑉𝑀 ՜ 𝑀𝐼

Objective: 𝑀𝐼∗ = 𝑀𝐼

Method: 𝑀𝐼∗∗ = 𝑓𝑂𝑉𝑀(𝑀𝐼)
1. Polynomial function

2. LUT

Problem: 𝑀𝐼∗ ՜ 𝑂𝑉𝑀 ՜ 𝑀𝐼, then 𝑀𝐼∗ ≠ 𝑀𝐼

Effect of OVM on THDv:
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Electric Motor Torque Control for Electrified Transportation Systems

Modulator: Generate command signals from continuous control voltages

• Advantage of linear PWM: constant switching frequency

• Advantage of overmodulation: maximization of DC-link voltage utilization 

⇒ extension of speed range

• Challenges: harmonics of control voltages, THDv and THDi, smooth 

transition to six-step operation, instabilities/disturbances at low frequency 

modulation index

• Other techniques: Selected Harmonic Elimination (SHE), Selected 

Harmonic Mitigation (SHM), Hybrid PWM, Optimal Pulse Patterns

• Other solutions to extend speed range: variable DC-link voltage, Current-

Source Inverter (CSI), sinus-inverter



This document and the information therein are protected by copyright. 
57

Motor Drives

Motor Control for Electrified Transportation Systems
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Motor Drives for Speed Range Extension

Z-source inverter

Boost + VSI

DC-link voltage adaptation for speed range extension:

A. Battiston et al., “A Control Strategy for Electric Traction Systems Using a PM-Motor Fed by a Bidirectional Z-Source Inverter,” 

IEEE Trans. on Vehicular Technology, Vol. 63, No. 9, pp. 4178-4191, Nov. 2014.

Quasi Z-source inverter
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Motor Drives for Speed Range Extension

Z-source inverter

Boost + VSI

DC-link voltage adaptation for speed range extension:

A. Battiston et al., “A Control Strategy for Electric Traction Systems Using a PM-Motor Fed by a Bidirectional Z-Source Inverter,” 

IEEE Trans. on Vehicular Technology, Vol. 63, No. 9, pp. 4178-4191, Nov. 2014.

Quasi Z-source inverter
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Drawbacks:

▪High stress on components

▪Limited voltage stepping-up due to efficiency

▪Power density
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Motor Drives: New Topologies

Current-Source Inverter (CSI):Y-inverter:

J. Kolar and J. Huber, “Next Generation Three-Phase Variable Speed Drive SiC/GaN PWM Inverter Concepts,” PEMC 2020, Apr. 2021.

Features:

▪ Single inductor

▪ Current control for buck stage output current

▪ Monolithic Bidirectional GaN switches

Challenges:

▪ Off-the-shelf legs/inverter

▪ Motor torque control over wide speed range

Features:

▪ Buck-boost conversion

▪ Sinusoidal output voltage

▪ Off-the-shelf legs or bridges

Challenges:

▪ Complex control: three-cascaded loops

▪ Power density
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Motor Drives: Trends and Challenges

▪ Multi-level inverters: higher voltage motors

▪ Sinus-inverter: low high frequency components, longer useful lifetime, lower losses in 

motor, wide voltage and frequency range 

▪ Smaller/lighter inverters and Motor-integrated inverters

▪ Challenges with WBG devices (SiC and GaN): packaging, EMI, motor insulation, 

shaft (bearing) currents

▪ Challenges at high-power motor drives: parallel interleaving for large currents sharing

▪ Challenges with EMI filters: higher influence of parasitic elements, couplings between 

components

▪ Effect of long cables: output filter to be added
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Conclusion

Motor Control for Electrified Transportation Systems
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• Wide speed range operation: maintaining the control over wide range variation of 

speed with a given DC voltage (maximum DC-link voltage utilization)

• Efficiency: high efficiency operation over wide speed range (extension of battery range)

• Optimal design of ASD: impact of control on optimization of ASD (system level) in 

terms of weight and volume (power density in 𝑘𝑔/𝑘𝑊 and 𝑙/𝑘𝑊)

• Reliability and maintenance: improving reliability by design, partial/full parallel 

redundancy, fast/cost effective maintainability

• Cost reduction: reducing cost while improving/keeping same performances

• Noise and vibration reduction: reducing torque ripples, noise and vibration using more 

effective control laws

• Accurate torque control: torque estimation, adaptive MTPA, effect of temperature

Motor Control for Electrified Transportation: Trends and Challenges
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• Current control under OVM and SSO: THDi reduction under OVM, torque ripple 

reduction, smooth transition between OVM and SSO

• Fault-tolerant capability: fault diagnosis and prognosis, health-monitoring, remaining 

useful lifetime (RUL) estimation, fault-tolerant control 

• Multi-phase motors: power and torque splitting under normal and fault conditions, 

reducing current harmonics using either current controllers or tailored PWM techniques 

• Current control techniques: development of control laws for new motor drives and 

multi-phase motors 

• Motor-integrated inverters: high efficiency, high power density, better EMI immunity, 

“non-expert” installation

A good motor is one that can be forgotten!

Motor Control for Electrified Transportation: Trends and Challenges
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