

Motor Control for Electrified Transportation Systems

Babak Nahid-Mobarakeh PhD, HDR, Fellow IEEE McMaster University

14th International Conference of TC-Electrimacs Committee 16-19 May 2022 Nancy, France

Outline

- Adjustable Speed Drives (ASD) in electrified transportation systems
- Electric motor torque control
- Indirect torque control: current control
- Pulse-Width Modulators
- Motor Drives
- Conclusion and challenges

Electrified Transportation Systems

Tesla Model S:Traction Motor: 3ϕ Induction
Machine $P_{max} = 310 \text{ kW}$

<u>Citroen CO</u> Traction Motor: PM Synchronous Machine P_{max} = 49 kW

Lexus RX 450h:

Traction Motor: PM Synchronous Machine

P_{max} = 130 kW McMaster

University

RENAULT Zoe

Traction Motor: Wound Rotor Synchronous Machine P_{max} = 65 kW

This document and the information therein are protected by copyright.

Electrified Transportation Systems

Electrified Transportation Systems: Flying Cars

This document and the information therein are protected by copyright.

Nand

Other Examples of Electrified Transportation Systems

Sea: oil & gas offshore platforms

RIP Converter

Power Wesnon

All Electric Ship (AES)

Rail: electric locomotive

mobility by nature.

Automated manufacturing

ELEC.

nance

2022

This document and the information therein are protected by copyright.

AC to DC

Battery

Structure of Adjustable Speed Drives

ELECT

Nancy

2022

Topologies for Adjustable Speed Drives

8

ELECT

Nance

2022

Control of Adjustable Speed Drives

- No unique approach for drives with power range going from Watt to 100+kW
- Main control techniques for AC drives:
 - 1) **Open-loop control:**

laster

University

- Control law: very simple, pulse trains generated using a look-up table or a simple equation
- Sensors: generally no sensor required
- Applications: mostly low power low cost applications
- Drawbacks: accuracy, efficiency
- 2) Scalar control (V/f or V/Hz):
 - **Control law:** simple relation between stator voltage magnitude and rotor speed (often under look-up table form)
 - Sensors: mechanical sensor (or speed estimator) required
 - Applications: mostly low power low cost applications
 - Drawbacks: accuracy, efficiency

Control of Adjustable Speed Drives

3) Vector control:

- Direct Torque Control (DTC):
 - **Control law:** torque and flux estimators AND switch pattern selection OR current regulators + modulator
 - Sensors: phase current sensors and mechanical sensor, DC-link voltage sensor optional
 - Applications: widely applied to motor control
 - Drawbacks: noise, torque ripples, cost
- Indirect Torque Control or Field-Oriented Control (FOC):
 - **Control law:** Park transformation + current regulators + modulator OR switch pattern selection, flux estimator in some variants
 - Sensors: phase current sensors and mechanical sensor, DC-link voltage sensor optional
 - Applications: very widely applied to motor and generator control
 - Drawbacks: cost

Vector Control of Adjustable Speed Drives

Motor Drives in Electrified Transportation Systems

Missions:

Master

University

- Electromechanical actuators (EMA):
 - few Watts to kW motor drives
 - fixed or adjustable speed drives
- Pumps and fans:
 - hundreds of Watts to tens of kW
 - mainly adjustable speed drives
- Electric motors for propulsion/traction:
 - few kW to hundreds of kW
 - adjustable speed drives

Mission Profile: Electric Vehicle

Urban/extra-urban vehicle

Motor Control for Electrified Transportation Systems

Electric Motor Torque Control

This document and the information therein are protected by copyright.

Adjustable Speed Drives: Torque Control Problem

Maximum Torque Per Ampere (MTPA) and Flux-Weakening (FW)

Adjustable Speed Drives: Torque Control Strategy

This document and the information therein are protected by copyright.

Adjustable Speed Drives: Torque Control Strategy + FW

Adjustable Speed Drives: Torque Control Strategy + FW

Adjustable Speed Drives: Torque Control Strategy + FW

Indirect Torque Control:

Torque Control Strategy + FW: Current References

Adjustable Speed Drives: Feedback Flux-Weakening

Torque Control Strategy:

McMaster

University

Advantage: Improvement of robustness with respect to model uncertainties Challenges: Tuning of FBFW, anti wind-up if integral action, fast dynamic

Electric Motor Torque Control for Electrified Transportation Systems

Indirect Torque Control: Torque control through current control

- Advantage: smooth current (so torque) control
- **Challenges:** accurate model, DC-link voltage utilization, efficiency, sensorless control (cost/reliability)
- **Requirements:** look-up tables (or functions) relating torque to currents in MTPA and FW regions, <u>current controllers</u>

Motor Control for Electrified Transportation Systems

Current Control

Current Control: PMSM Model

Park model of PMSM:

$$\begin{bmatrix} \nu_d^* \\ \nu_q^* \end{bmatrix} = R_s \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \omega \cdot \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \psi_d \\ \psi_q \end{bmatrix} + \begin{bmatrix} \Delta \nu_d \\ \Delta \nu_q \end{bmatrix}$$

with: $\begin{cases} \psi_d = L_d(i_d, i_q, \theta, T^\circ) \cdot i_d + \Psi_f(i_d, i_q, \theta, T^\circ) \\ \psi_q = L_q(i_d, i_q, \theta, T^\circ) \cdot i_q \end{cases}$

and inverter nonlinearities:

McMaster

University

s:
$$\begin{cases} \Delta v_d = \Delta V \cdot f_d (\theta) \\ \Delta v_q = \Delta V \cdot f_q (\theta) \end{cases}$$

Motor torque (Clarke transformation):

$$T_m = \frac{3}{2} \cdot P \cdot \left(\psi_d \cdot i_q - \psi_q \cdot i_d\right) = \frac{3}{2} \cdot P \cdot \left[\Psi_f + (L_d - L_q) \cdot i_d\right] \cdot i_q$$

This document and the information therein are protected by copyright.

Current Control: PMSM Model

Modeling: mapping flux linkages

PMSM Current Control

This document and the information therein are protected by copyright.

PMSM Current Control: Design and Analysis

Current control objectives:

Vlaster

University

- Zero steady-state error: $\lim_{t \to \infty} i_{dq}(t) = i_{dq ref}$
- No overshoot (or overshoot $< 5\% \sim 10\%$)
- Requested response time t_r (in *ms*) or current (torque) control bandwidth (in Hz or rad/s)
- Fast set-point tracking with small tracking error

PI Current Control: Design

Current controller transfer function:

$$\begin{bmatrix} \tilde{v}_d^* \\ \tilde{v}_q^* \end{bmatrix} = C(s) \cdot \left\{ \begin{bmatrix} \tilde{\iota}_{dref} \\ \tilde{\iota}_{qref} \end{bmatrix} - \begin{bmatrix} \tilde{\iota}_d \\ \tilde{\iota}_q \end{bmatrix} \right\}$$

Controller transfer function without decoupling:

$$C(s) = \begin{bmatrix} K_{pd} \frac{1 + \tau_{id} \cdot s}{\tau_{id} \cdot s} & 0\\ 0 & K_{pq} \frac{1 + \tau_{iq} \cdot s}{\tau_{iq} \cdot s} \end{bmatrix}$$

$$K_{id} = R_s \cdot \omega_{BWd}$$

$$K_{pd} = \ell_d \cdot \omega_{BWd}$$

$$desired bandwidth of$$

$$\tau_{id} = K_{pd}/K_{id}$$

ELECT

nance

2022

$$K_{iq} = R_s \cdot \omega_{BWq}$$
 desired bandwidth of

$$K_{pq} = \ell_q \cdot \omega_{BWq}$$

$$\tau_{iq} = K_{pq}/K_{iq}$$

This document and the information therein are protected by copyright.

McMaster

University

PI Current Control: Analysis

Closed-loop transfer function: without decoupling

$$\begin{bmatrix} \tilde{i}_d \\ \tilde{i}_q \end{bmatrix} = \begin{bmatrix} I + Y(s) \cdot C(s) \end{bmatrix}^{-1} \cdot Y(s) \cdot C(s) \cdot \begin{bmatrix} \tilde{i}_{dref} \\ \tilde{i}_{qref} \end{bmatrix} = \begin{bmatrix} T_{dd}(s) & T_{dq}(s) \\ T_{qd}(s) & T_{qq}(s) \end{bmatrix} \cdot \begin{bmatrix} \tilde{i}_{dref} \\ \tilde{i}_{qref} \end{bmatrix}$$

identity matrix
$$\Rightarrow \begin{cases} \tilde{i}_d = T_{dd}(s) \cdot \tilde{i}_{dref} + T_{dq}(s) \cdot \tilde{i}_{qref} \\ \tilde{i}_q = T_{qd}(s) \cdot \tilde{i}_{dref} + T_{qq}(s) \cdot \tilde{i}_{qref} \end{cases}$$

PI Current Control + Feedforward Decoupling: Design

Current controller transfer function:

$$\begin{bmatrix} \tilde{v}_d^* \\ \tilde{v}_q^* \end{bmatrix} = C(s) \cdot \left\{ \begin{bmatrix} \tilde{\iota}_{dref} \\ \tilde{\iota}_{qref} \end{bmatrix} - \begin{bmatrix} \tilde{\iota}_d \\ \tilde{\iota}_q \end{bmatrix} \right\}$$

 $K_{pd} = \ell_d \cdot \omega_{BWd} \qquad K_{pq} = \ell_q \cdot \omega_{BWq}$ $\tau_{id} = \ell_d / R_s \qquad \tau_{iq} = \ell_q / R_s$

With feedforward decoupling, it yields:

PI Current Control + Feedback Decoupling: Design

With **feedback decoupling**, it gives:

$$\begin{bmatrix} \tilde{v}_d^* \\ \tilde{v}_q^* \end{bmatrix} = C(s) \cdot \left\{ \begin{bmatrix} \tilde{i}_{dref} \\ \tilde{i}_{qref} \end{bmatrix} - \begin{bmatrix} \tilde{i}_d \\ \tilde{i}_q \end{bmatrix} \right\} + D \cdot \begin{bmatrix} \tilde{i}_d \\ \tilde{i}_q \end{bmatrix}$$

 $K_{pd} = \ell_d \cdot \omega_{BWd} \qquad K_{pq} = \ell_q \cdot \omega_{BWq}$ $\tau_{id} = \ell_d / R_s \qquad \tau_{iq} = \ell_q / R_s$

2022

with:

McMaster

University

$$C(s) = \begin{bmatrix} K_{pd} \frac{1 + \tau_{id} \cdot s}{\tau_{id} \cdot s} & 0\\ 0 & K_{pq} \frac{1 + \tau_{iq} \cdot s}{\tau_{iq} \cdot s} \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & -L_q \omega\\ L_d \omega & 0 \end{bmatrix}$$
ELECTION

PI Current Control + Decoupling: Analysis

Closed-loop transfer function: **known parameters**

$$\begin{bmatrix} \tilde{\iota}_d \\ \tilde{\iota}_q \end{bmatrix} = \begin{bmatrix} T_{dd}(s) & 0 \\ 0 & T_{qq}(s) \end{bmatrix} \cdot \begin{bmatrix} \tilde{\iota}_{dref} \\ \tilde{\iota}_{qref} \end{bmatrix}$$

PI + **feedback decoupling**:

University

PI + feedforward decoupling:

2022

PI Current Control + Decoupling: Analysis

Closed-loop transfer function: parameters uncertainty

$$\begin{bmatrix} \tilde{\iota}_d \\ \tilde{\iota}_q \end{bmatrix} = \begin{bmatrix} T_{dd}(s) & T_{dq}(s) \\ T_{qd}(s) & T_{qq}(s) \end{bmatrix} \cdot \begin{bmatrix} \tilde{\iota}_{dref} \\ \tilde{\iota}_{qref} \end{bmatrix}$$

PI + **feedback decoupling**:

PI + **feedforward decoupling**:

2022

This document and the information therein are protected by copyright.

University

Complex Vector Current Control: Design

complex vector current controller:

$$C(s) = \begin{bmatrix} K_{pd} \frac{1 + \tau_{id} \cdot s}{\tau_{id} \cdot s} & \frac{-K_{pq} \cdot \omega}{s} \\ \frac{K_{pd} \cdot \omega}{s} & K_{pq} \frac{1 + \tau_{iq} \cdot s}{\tau_{iq} \cdot s} \end{bmatrix}$$

McMaster
University This document and the information therein are protected by copyright.

Complex Vector Current Control: Design

Improved PI controller: inherent decoupling

$$\begin{bmatrix} \tilde{\iota}_d \\ \tilde{\iota}_q \end{bmatrix} = \begin{bmatrix} T_{dd}(s) & T_{dq}(s) \\ T_{qd}(s) & T_{qq}(s) \end{bmatrix} \cdot \begin{bmatrix} \tilde{\iota}_{dref} \\ \tilde{\iota}_{qref} \end{bmatrix}$$

Model-Predictive Current Control: Design

Predictive model using Euler discretization:

ith predicted currents:

$$i_{di}^{k+1} = i_d^k + \frac{T_s}{\ell_d^k} \left(v_{di}^{*k} - R_s i_d^k + \omega^k L_q^k i_q^k - \Delta V f_d(\theta^k) \right)$$

$$i_{qi}^{k+1} = i_q^k + \frac{T_s}{\ell_q^k} \left(v_{qi}^{*k} - R_s i_q^k - \omega^k \left(L_d^k i_d^k + \Psi_f \right) - \Delta V f_q(\theta^k) \right)$$

1:
$$\begin{bmatrix} v_{di}^{*} \\ v_{qi}^{*} \end{bmatrix} = \underbrace{P(-\theta) \cdot C_{32}^{-1}}_{Park and Clarke} \cdot \underbrace{\begin{bmatrix} S_{ai} \\ S_{bi} \\ S_{ci} \end{bmatrix}}_{i^{th} switching state}$$

Model-Predictive Current Control: Design

Predictive model using Euler discretization:

ith predicted flux linkages:

Choices for cost function:

 $g_i = \left(i_{dref} - \hat{\imath}_d^{k+2}\right)^2 + \lambda_q \left(i_{qref} - \hat{\imath}_q^{k+2}\right)^2$ $g_{is} = \left(i_{dref} - \hat{\imath}_d^{k+2}\right)^2 + \lambda_q \left(i_{qref} - \hat{\imath}_q^{k+2}\right)^2 + \lambda_s n_s$

with: $n_S = \sum_{i=1}^n |S_i^{k+1} - S_i^k|$

Electric Motor Torque Control for Electrified Transportation Systems

Current Control: Control of dq –currents for indirect torque control

- Techniques: many linear and nonlinear current controllers
- **Challenges:** accurate model, online parameter estimation, robustness, current sensorless control
- **Requirements:** phase current sensors and rotor angle sensor, DC-link voltage sensor (optional), current controllers, <u>modulator</u> (recommended)

Motor Control for Electrified Transportation Systems

Pulse-Width Modulator

This document and the information therein are protected by copyright.

Modulator: Pulse-Width Modulation (PWM)

Sinusoidal PWM (SPWM): DC-Link Voltage Utilization

Linear modulation: Fundamental of $v_{abc} = G_{VSI} \cdot v_{abc}^*$ \Rightarrow VSI being modeled as a gain

Condition for linear modulation:

$$|v_a^*| \le V_p = \frac{v_{DC}}{2}$$

 $+2v_{DC}/3$ $+ v_{DC}/3$ $-v_{DC}/3$ T_{sw} $-2v_{DC}/3$ v_c $+V_p$ v_a^* T_{sw} $\frac{1}{2}T_{SW}$ $-V_p$

Therefore:

University

McMaster
University W
This document and the information therein are protected by convright.

$$\|v_{abc}^*\| = \sqrt{v_a^{*2} + v_b^{*2} + v_c^{*2}} = \sqrt{\frac{3}{2}} V_m^* < \sqrt{\frac{3}{2}} \frac{v_{DC}}{2} \cong 0.612 v_{DC}$$
42

SVM vs SPWM: DC-Link Voltage Utilization

Maximum voltage vector magnitude:

Space-Vector Modulation (SVM) vs SPWM Comparison in *abc* frame:

$$\|v_{abc}\|_{SPWM} \leq \sqrt{\frac{3}{2}} \frac{v_{DC}}{2} + 15\%$$
$$\|v_{abc}\|_{SVM} \leq \frac{v_{DC}}{\sqrt{2}}$$

Comparison in $\alpha\beta$ frame: (Clarke transformation)

$$\left\| v_{\alpha\beta} \right\|_{SPWM} \leq \frac{v_{DC}}{2} + 15\%$$
$$\left\| v_{\alpha\beta} \right\|_{SVM} \leq \frac{v_{DC}}{\sqrt{3}}$$

This document and the information therein are protected by copyright.

McMaster

University

Six-Step Operation (SSO): DC-Link Voltage Utilization

Maximum DC-link voltage utilization:

Amplitude Modulation Index (MI)

Maximum DC-link voltage utilization:

Nonlinear modulation region:

Nonlinear Modulation: Overmodulation (OVM)

• *MI*^{*}: Modulation Index Reference

$$MI^* \triangleq \frac{\left\| v_{\alpha\beta}^* \right\|}{\frac{2}{\pi} \cdot v_{DC}}$$

• *MI*: Actual Modulation Index

$$MI \triangleq \frac{\left\| v_{\alpha\beta} \right\|}{\frac{2}{\pi} \cdot v_{DC}}$$

MI range:

University

- Linear modulation: $MI \in [0 \quad 0.9068]$
- Overmodulation: $MI \in (0.9068 \ 1)$
- Six-step operation: MI = 1

	Magnitude	Angle	
Input	v_s^*	$ heta_{m{v}}^*$	
Output	v_s	$ heta_{ u}$	
	E		ACS 2022

This document and the information therein are protected by copyright.

Nonlinear Modulation: Overmodulation (OVM)

From Linear Modulation to Overmodulation and Six-Step Operation

2022

Overmodulation (OVM): Waveforms

McMaster

University

Overmodulation (OVM) Techniques

- 1. Minimum Phase Error (MPE) - $\theta_v^* = \theta_v$: Phase error is **ZERO**
- 2. Minimum Distance Error (MDE) - min($|v_s^* - v_s|$): Vector error is minimized

3. Keeping Switching State (SS) - Hold on v_{α}^* or v_{β}^*

McMaster

University

4. Minimum Magnitude Error (MME) - $v_s^* = v_s$: Magnitude error is **ZERO**

Overmodulation (OVM) Techniques

Maximization of DC-link Voltage Utilization

- Harmonics of control (reference) voltages
- Nonlinear modulation index
- Effect on THDv (and so THDi)
- Performance degradation at low frequency modulation index

$$M_f = \frac{f_{sw}}{f_1}$$

Transition from OVM to SSO

Overmodulation Challenges: Harmonics of Control Voltages

<u>Example</u>: effect of 5th-harmonic: $v_a^* = V_s^* \cos \theta_v^* + V_{h5}^* \cos(5\theta_v^* + \phi_{h5}^*)$

Linear modulation:

Overmodulation:

This document and the information therein are protected by copyright.

2022

Nance

Overmodulation Challenges: Nonlinear Modulation Index

Nonlinearity due to OVM: $\langle v_{abc} \rangle \neq G_{VSI} \cdot v_{abc}^*$

Modulation Index Linearization (MIL):

Master

University

Problem: $MI^* \rightarrow OVM \rightarrow MI$, then $MI^* \neq MI$ MI linearization: $MI^* \rightarrow MI^{**} \rightarrow OVM \rightarrow MI$ Objective: $MI^* = MI$ Method: $MI^{**} = f_{OVM}(MI)$ 1. Polynomial function 2. LUT

This document and the information therein are protected by copyright.

Effect of OVM on THDv:

Electric Motor Torque Control for Electrified Transportation Systems

Modulator: Generate command signals from continuous control voltages

- Advantage of linear PWM: constant switching frequency
- Advantage of overmodulation: maximization of DC-link voltage utilization
 ⇒ extension of speed range
- **Challenges:** harmonics of control voltages, THDv and THDi, smooth transition to six-step operation, instabilities/disturbances at low frequency modulation index
- Other techniques: Selected Harmonic Elimination (SHE), Selected Harmonic Mitigation (SHM), Hybrid PWM, Optimal Pulse Patterns
- Other solutions to extend speed range: variable DC-link voltage, Current-Source Inverter (CSI), sinus-inverter

Jniversity

Motor Control for Electrified Transportation Systems

Motor Drives

Motor Drives for Speed Range Extension

DC-link voltage adaptation for speed range extension:

$i_{e}r_{filter} L_{f} \qquad \overline{u} \qquad i_{D} \qquad r_{L_{1}} \qquad L_{1} \qquad i_{1} \qquad I_{Load}$ $v_{in} \qquad V_{s} \qquad V_{s} \qquad V_{c} \qquad V_{c}$

Z-source inverter

A. Battiston *et al.*, "A Control Strategy for Electric Traction Systems Using a PM-Motor Fed by a Bidirectional Z-Source Inverter," *IEEE Trans. on Vehicular Technology*, Vol. 63, No. 9, pp. 4178-4191, Nov. 2014.

Motor Drives for Speed Range Extension

DC-link voltage adaptation for speed range extension:

Drawbacks:

- High stress on components
- Limited voltage stepping-up due to efficiency
- Power density

A. Battiston *et al.*, "A Control Strategy for Electric Traction Systems Using a PM-Motor Fed by a Bidirectional Z-Source Inverter," *IEEE Trans. on Vehicular Technology*, Vol. 63, No. 9, pp. 4178-4191, Nov. 2014.

Motor Drives: New Topologies

Y-inverter:

Features:

- Buck-boost conversion
- Sinusoidal output voltage
- Off-the-shelf legs or bridges

Challenges:

University

- Complex control: three-cascaded loops
- Power density

Current-Source Inverter (CSI):

Features:

- Single inductor
- Current control for buck stage output current
- Monolithic Bidirectional GaN switches

Challenges:

- Off-the-shelf legs/inverter
- Motor torque control over wide speed range

ELEC1

2022

J. Kolar and J. Huber, "Next Generation Three-Phase Variable Speed Drive SiC/GaN PWM Inverter Concepts," PEMC 2020, Apr. 2021.

This document and the information therein are protected by copyright.

60

Motor Drives: Trends and Challenges

- Multi-level inverters: higher voltage motors
- Sinus-inverter: low high frequency components, longer useful lifetime, lower losses in motor, wide voltage and frequency range
- Smaller/lighter inverters and Motor-integrated inverters
- Challenges with WBG devices (SiC and GaN): packaging, EMI, motor insulation, shaft (bearing) currents
- Challenges at high-power motor drives: parallel interleaving for large currents sharing
- Challenges with EMI filters: higher influence of parasitic elements, couplings between components
- Effect of long cables: output filter to be added

Motor Control for Electrified Transportation Systems

Conclusion

Motor Control for Electrified Transportation: Trends and Challenges

- Wide speed range operation: maintaining the control over wide range variation of speed with a given DC voltage (<u>maximum DC-link voltage utilization</u>)
- Efficiency: high efficiency operation over wide speed range (<u>extension of battery range</u>)
- **Optimal design of ASD:** impact of control on optimization of ASD (system level) in terms of weight and volume (power density in kg/kW and l/kW)
- **Reliability and maintenance:** improving reliability by design, partial/full parallel redundancy, fast/cost effective maintainability
- **Cost reduction:** reducing cost while improving/keeping same performances
- Noise and vibration reduction: reducing torque ripples, noise and vibration using more effective control laws
- Accurate torque control: torque estimation, adaptive MTPA, effect of temperature

Motor Control for Electrified Transportation: Trends and Challenges

- **Current control under OVM and SSO:** THDi reduction under OVM, torque ripple reduction, smooth transition between OVM and SSO
- **Fault-tolerant capability:** fault diagnosis and prognosis, health-monitoring, remaining useful lifetime (RUL) estimation, fault-tolerant control
- **Multi-phase motors:** power and torque splitting under normal and fault conditions, reducing current harmonics using either current controllers or tailored PWM techniques
- **Current control techniques:** development of control laws for new motor drives and multi-phase motors
- Motor-integrated inverters: high efficiency, high power density, better EMI immunity, "non-expert" installation

A good motor is one that can be forgotten!

Thank you!

14th International Conference of TC-Electrimacs Committee 16-19 May 2022 Nancy, France

